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Testing

Real World Problem

|
Test on the Model the problem

testing W
dataset!! Training
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Training Data

Assume IID data:
N trai:
ainjn dafapoin s

(xM,yM), (x®),y®), . (x™),y)

m = |x]

Each datapoint has m features and a single oufput



Training: Heart Disease Classifier

ROI 1 ROI 2 ROl m Output
. B
Heart 1 0 1 1 0
Heart 2 1 1 1 0
Heart n 0 0 0 1

2o(X)



Testing: Heart Disease Classifier
ROI 1 ROI 2 ROl m Output

New
1 0 1 1

2o(X)




Nailve Bayes Classification
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Big Assumption

Naive Bayes Assumption:

P(x|y) = HP i |y)




End Review
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Chapter 0: Background



Background: Sigmoid Function

-12 -10 -8

The sigmoid function squashes z to be a number between 0 and 1



Background: Key Notation

o'(z) — L Sigmoid function
1 +e 7
n
T, o Weighted sum
0" x = Z 0ii (aka dot product)
1=1

= 0121 + Ogx2 + -+ - + Opxy

O'(HTx) — ! Sigmoid function of

14 e 97x weighted sum




Background: Chain Rule

Who knew calculus would be so useful?

Of(x) 0Of(z) Oz

Ox 0z  Ox

Aka decomposition of composed functions

flz) = fz(z))



Chapter 1: Big Picture



From Naive Bayes to Logistic Regression

- In classification we care about P(Y | X)

- Recall the Naive Bayes Classifier
« Predict P(Y | X)
« Use assumption that P(X|Y):P(X1,X2,...Xm|Y):ﬁP(XZ.|Y)

« That is a pretty big assumption...

- Could we model P(Y | X) directly?

« Welcome our friend: logistic regression!



Logistic Regression Assumption

» Could we model P(Y | X) directly?

« Welcome our friend: logistic regression!
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Logistic Regression Assumption

» Could we model P(Y | X) directly?

« Welcome our friend: logistic regression!
= 1|x)

PY =1X=x) = 0(297;%’)

[_3.




Logistic Regression
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Logistic Regression




Logistic Regression Cartoon




Inputs x=[0, 1, 1]




Inputs




Inputs + Output




Inputs







Weighed Sum




Squashing Function




Prediction




Parameters Affect Prediction
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Parameters Affect Prediction




Different Predictions for Different Inputs
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Logistic Regression Assumption

- Model conditional likelihood P(Y | X) directly
« Model this probability with logistic function:

P(Y =1|X) = o(z) where z = 0y + Z 0;x;
i=1

. For simplicity define 7o =1 so z=06"x

= Sj = () =1 = 1:
ince P(Y | X)+P(Y | X) - ~

Recall:
Sigmoid function

P(Y = 0|X =x) = 1 — o(67x) o(z) = ; ;@_Z

- )

P(Y =1|X =x) = 0(6'x)
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The Sigmoid Function

f(2)=

O 0 O 00 00 0
4 3 2 1 0 1 2 3 4

Note: inflection pointatz=0. f(0)=0.5

5

Want to distinguish y = 1 (blue)
points from y = 0 (red) points

A



What is in a Name

Regression Algorithms Classification Algorithms

Linear Regression ¢ Nailve Bayes ¢

Logistic Regression

\

Awesome classifier,
terrible name

If Chris could rename it he would call it: Sigmoidal Classification



What makes for a "smart”
logistic regression algorithm?



Logistic regression gets its
intelligence from its
thetas (aka its parameters)

Piech, CS106A, Stanford University



How Do We Learn Parameters?

Let’s say that:
x =1[1,0,1,1]

Data looks
unlikely



How Do We Learn Parameters?

Let’s say that:
x =1[1,0,1,1]

Data looks
unlikely




How Do We Learn Parameters?

Let’s say that:
x =1[1,0,1,1]

Data is much
more likely!




Maximum Likelihood Estimation

Likelihood of Data from a Normal

New

0.0 % = Settings -
b Polnts
12 A

Mask connect

Remember this?




Math for Logistic Regression

@ Make logistic regression assumption
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

@ Calculate the log likelihood for all data

LL(0) = Zy(i) log o(07x D) + (1 — yD) log[l — (87 xD)]
i=0

@ Get derivative of log likelihood with respect to thetas

o = [ o]




Gradient Ascent

LOgISTIC regresSiOn
LL function is
convex

| J7 X
| - ‘ "0’0':"“\‘\“\\\\\:\\\\\\ |

Walk uphill and you will find a local maxima
(if your step size is small enough)



Gradient ascent is your
bread and butter
algorithm for optimization
(eg argmax)

Piech, CS106A, Stanford University



Gradient Ascent Step

o = [ )

1=0
H new 0 old 4+ aLL(H Old) Do this
. p— . 7’] . 5
’ ’ 893' td for all
y n | _ (i) thetas!
1=0

LL®) -




What does this look like in code?




Logistic Regression Training

[Initialize: 0 0 for all 0 £ j < m

J

-
Calculate all Oj




Logistic Regression Training

[Initialize: 0 0 for all 0 £ j < m

J

-

-

-

N
Repeat many times:
| gradient[j] = 0 for all O L j<m
Calculate all gradient[j]’s based on data
[Hj += n * gradient[j] for all 0 < j < mJ
J




Logistic Regression Training

[Initialize: 0

P 0 for all 0 £ j < m

-

-

-

Repeat many times:

Ve

| gradient[j] = 0 for all O L j<m

Vs

-

For each training example (x, y):

For each parameter j:

Update gradient|[j] for current training

example

[é% += n * gradient[j] for all 0 < j < mJ




Logistic Regression Training

[Initialize: 0

P 0 for all 0 £ j < m

-

-

-

[é% += n * gradient[j] for all 0 < j < mJ

~
Repeat many times:
| gradient[j] = 0 for all O L j<m
For each training example (x, y):
For each parameter j:
. L 1
gradlent[J]‘F—-xj(y-— ; 6—9Tx>




Training

Dataset likelihood:

Likelihood

Training 1terations
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Dataset likelihood:

Likelihood
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Training

Dataset likelihood:

Likelihood

Training 1terations




Don’t forget:

.J X; is j-th input variable
and x, = 1.

Allows for 0, to be an
Intercept.

Piech, CS106A, Stanford University



Classification with Logistic Regression

+ Training: determine parameters 6, (forall 0 <j<m)

« After parameters 6, have been learned, test classifier

- To test classifier, for each new (test) instance X:

. Compute:p:P(Y=1|X)=1;_Z, where 2z =6'x
+e

1 p>0.5

= Classify instance as: y = .
0 otherwise

- Note about evaluation set-up: parameters 6, are not
updated during “testing” phase



Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)



Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)



Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)



Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)



Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)



Chapter 2: How Come?



Logistic Regression

@ Make logistic regression assumption
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

@ Calculate the log probability for all data

LL(0) = Zy(i) log o(07x D) + (1 — yD) log[l — (87 xD)]
i=0

@ Get derivative of log probability with respect to thetas

o = [ o]



How did we get that LL function?



Recall: PMF of Bernoulli

« Y ~ Ber(p)
. Probability mass function: P(Y = y)

PMF of Bernoulli PMF of Bernoulli (p = 0.2)

\%

l1-p 0.8
0.6
0.4 1

P
0.2¢

— 0 1 1




Log Probability of Data
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

‘\“\?\.\e P(Y = y‘X = X) — O'(HTX)y . [1 _ O'(HTX)} (1—y)

T L) =[Py = y@|x = x@)

- NG 11—y
— H(;(gTX(Z))y( " {1 —o(0Tx)]

\0%
e
e no | | |
LL(@) — Zy(z) 1Og0'((9TX(Z)) + (1 _ y(z)> 10g[1 - U(HTX(Z))]
1=0



How did we get that gradient?



Sigmoid has a Beautiful Slope

True fact about
sigmoid functions

0
8—%0(2) = 0(2)[1 —o(2)]

0
Errata: Accidentally wrote 57~ o(z) =0o(2)[1— 2



Sigmoid has a Beautiful Slope

o . 0 _
87ja(e 7)? a7j0(z) =0 (2)[1 —o(2)]

where z = 01«

Y T\ — 0 0z Chain rule!
99710 ) = 5,79 5.
a%J(HTx) =007 2)[1 — o (6" )]z; Plug and chug
J

Sigmoid, you should be a ski hill



Sigmoid has a Beautiful Slope




ARE YOU READY"??7



| think ’'m Ready...

OLL(0)
00,

Where

LL) =) yPlogo(@x)+ (1—y)log[l — o(87x")]

1=1







)

srant ord



Think About Only One Training Instance

LL(O) =3 y@log g + (1 - y®) log[1 — 5]
1=1

We only need to calculate the
gradient for one training example!

9, . 0 .
%ZL:][(%,Z) :;%f(af,l)

We will pretend we only have
one example

LL(0) = ylogy + (1 —y)log[l — 9]

We can sum up the gradients of each
example to get the correct answer



First, imagine only one example

LL(#) = ylog g+ (1 —y)log[l — 7]
Where ¢ = o(0' %)

OLL(9) _ OLL(0) 9y CHAIN RULZ!
20, 9 90,



First, imagine only one example

LL(0) = ylogy + (1 —y)log[l — g]

Where ¢ = o(0' %)

OLL(6) _ OLL(6)

00,

0y 00,

= (y — 9)x;

CHAIN RULZ!

Already did that
one

Derive this one

Simplify



Make it Simple

LL(#) =ylogy + (1 —y)log[l — 7]
Where § = o(6x)

OLL(9) _ OLL(0) 0y CHAIN RULZ!
20, 9 90,
 OLL()

Already did that
one

=5 g1 —9)z;

A A

— [g _ 1- y} @(1 _ @)33] Derive this one

— (y _ y)ﬂfj Simplify



Now, all the data

LLO) =y logg" + (1 -y log[1 — 5]

1=1

G0 = J(QTX(Z'))

Derivative of sum...

0LL ~ 9 7 ~ (i i ~ (i
= %[y()logy”+(1—y())10g[1—y( )
=1 J
See last slide
1=1
Z — (7 9T (Z))]x§i) Some people dont like

hats...



Now, all the data

OLL(0)
99,




Logistic Regression

@ Make logistic regression assumption
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

@ Calculate the log probability for all data

LL(0) = Z y W logo(0TxD) + (1 — ) log[l — o (8T xD)]

1=1

@ Get derivative of log probability with respect to thetas

o = [ o]



The Hard Way

LL(#) = ylogo(0'x) + (1 — y)log[l — o(0* x)]

OLL(O) O . 9 .
] (1 — _
5, 06, —ylogo(6” x) + 9 (1 —y)log[l —o(0" X]
B Y l—y | 0O T
~ | o(0Tz)  1—o(0Tz) aej"(e z)

_ Y B l—y | 0 T
~ | o(0Tz)  1—o(0Tz) aefw 7)
y — o(0x)

~ Lo(0Tz)[1 — o(67x)] (0" x)[1 —o(0" z)z;

= [y —o(0"z)] z;



Phew!



Chapter 3: Philosophy



Choosing an Algorithm?

- Many trade-offs in choosing learning algorithm

« Continuous input variables
o Logistic Regression easily deals with continuous inputs

- Naive Bayes needs to use some parametric form for continuous
inputs (e.g., Gaussian) or “discretize” continuous values into
ranges (e.g., temperature in range: <50, 50-60, 60-70, >70)

« Discrete input variables

o Naive Bayes naturally handles multi-valued discrete data by
using multinomial distribution for P(X; | Y)

o Logistic Regression requires some sort of representation of
multi-valued discrete data (e.g., one hot vector)

o Say X, € {A, B, C}. Not necessarily a good idea to encode X; as
taking on input values 1, 2, or 3 corresponding to A, B, or C.



Discrimination Intuition

« Logistic regression is trying to fit a line that separates
data instances where y = 1 from those where y =0

® o ® o 0Tx =0

o 90$0+91$1+'°'+9m$m20

« We call such data (or the functions generating the data)
“linearly separable”

= Nalve bayes is linear too as there is no interaction
between different features.



Some Data Not Linearly Seperable

. Some data sets/functions are not separable

» Not possible to draw a line that successfully separates
all the y = 1 points (green) from the y = 0 points (red)

« Despite this fact, logistic regression and Naive Bayes
still often work well in practice
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Neuron
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Temri-a huﬂ;n‘ﬁ



Neuron

\
Termri~a hljﬂ,‘n—ﬁ



Neuron

Terri-y hm.*n.i



Some inputs are more important

Termiza bunt N -ﬂ



Artificial Neurons




Biological Basis for Neural Networks

. A neuron
‘Dené.'.ite Xl 91
\\ \ ) X2 92
ap o
e Aa;'_ X3 0 y
| 0,
euron scheme Xy
. Your brain

Actually, it’s probably someone else’s brain



(aka Neural Networks)

Deep learning is (at its
core) many logistic
regression pieces stacked
on top of each other.
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Revolution in Al




Computers Making Art




Basically just many logistic regression cells
And lots of chain rule...



Next up: Deep Learning!



