Logistic Regression

Chris Piech
CS109, Stanford University

Great Idea

Core
Algorithms

Theory

Machine Learning

Neural Networks

al® N ~eX\C
\’\(\(egs\o(\ $0 o e° \,Og\sesg;\o(\
@ed © \ L&Q’Q’(
— o)

Parameter Estimation

Review

Classification

Classification Task
Heart A‘ncestry

Netflix

NETELIX

Training

Real World Problem

|
Train on the Model the problem

training * _ /
dataset!! Training
Formal Model 6 Data
| /

Learning Algorithm

Vv ¥
Testing

Data 24(X)

Classification
Accuracy

Testing

Real World Problem

|
Test on the Model the problem

testing W
dataset!! Training
Formal Model 6 Data

| /
Learning Algorithm
Testing S —y Classitication
Data 2o(X) Accuracy

Training Data

Assume IID data:
N trai:
ainjn dafapoin s

(xM,yM), (x®),y®), . (x™),y)

m = |x]

Each datapoint has m features and a single oufput

Training: Heart Disease Classifier

ROI 1 ROI 2 ROl m Output
. B
Heart 1 0 1 1 0
Heart 2 1 1 1 0
Heart n 0 0 0 1

2o(X)

Testing: Heart Disease Classifier
ROI 1 ROI 2 ROl m Output

New
1 0 1 1

2o(X)

Nailve Bayes Classification

go(X)?

go(X)?

[0, 1, 1, O]

go(X)?

[0, 1, 1, O]

e
-

argmax P(y|x)

y:{Oal}

go(X)?

go(X)?

go(X)?

[0, 1, 1, O]

e
-

argmax P(y|x)

y:{Oal}

go(X)?

[0, 1, 1, O]

e
-

argmax P(y|x)

y:{Oal}

Big Assumption

Naive Bayes Assumption:

P(x|y) = HP i |y)

End Review

Logistic Regression

Machine Learning Dependencies

Great Idea

Core
Algorithms

Theory

Neural Networks

< | e || ¢ |
a2 X\ . X\
\’\“(@55\0“ \40\0\, e° \,09\5@55;\0“
Q@g \ © \ Q@oj
-/ _
y | / |

Parameter Estimation

Chapter 0: Background

Background: Sigmoid Function

-12 -10 -8

The sigmoid function squashes z to be a number between 0 and 1

Background: Key Notation

o'(z) — L Sigmoid function
1 +e 7
n
T, o Weighted sum
0" x = Z 0ii (aka dot product)
1=1

= 0121 + Ogx2 + -+ - + Opxy

O'(HTx) — ! Sigmoid function of

14 e 97x weighted sum

Background: Chain Rule

Who knew calculus would be so useful?

Of(x) 0Of(z) Oz

Ox 0z Ox

Aka decomposition of composed functions

flz) = fz(z))

Chapter 1: Big Picture

From Naive Bayes to Logistic Regression

- In classification we care about P(Y | X)

- Recall the Naive Bayes Classifier
« Predict P(Y | X)
« Use assumption that P(X|Y):P(X1,X2,...Xm|Y):ﬁP(XZ.|Y)

« That is a pretty big assumption...

- Could we model P(Y | X) directly?

« Welcome our friend: logistic regression!

Logistic Regression Assumption

» Could we model P(Y | X) directly?

« Welcome our friend: logistic regression!

~E

J

= 1|x)

Logistic Regression Assumption

» Could we model P(Y | X) directly?

« Welcome our friend: logistic regression!
= 1|x)

PY =1X=x) = 0(297;%’)

[_3.

Logistic Regression

o @
o
s

P(Y =1[X =x) =o() b:x:)

Logistic Regression

°®
%
2

Logistic Regression

Logistic Regression Cartoon

Inputs x=[0, 1, 1]

Inputs

Inputs + Output

Inputs

Weighed Sum

Squashing Function

Prediction

Parameters Affect Prediction

Parameters Affect Prediction

Parameters Affect Prediction

Different Predictions for Different Inputs

Different Predictions for Different Inputs

Different Predictions for Different Inputs

Logistic Regression Assumption

- Model conditional likelihood P(Y | X) directly
« Model this probability with logistic function:

P(Y =1|X) = o(z) where z = 0y + Z 0;x;
i=1

. For simplicity define 7o =1 so z=06"x

= Sj = () =1 = 1:
ince P(Y | X)+P(Y | X) - ~

Recall:
Sigmoid function

P(Y = 0|X =x) = 1 — o(67x) o(z) = ; ;@_Z

-)

P(Y =1|X =x) = 0(6'x)

0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

The Sigmoid Function

f(2)=

O 0 O 00 00 0
4 3 2 1 0 1 2 3 4

Note: inflection pointatz=0. f(0)=0.5

5

Want to distinguish y = 1 (blue)
points from y = 0 (red) points

A

What is in a Name

Regression Algorithms Classification Algorithms

Linear Regression ¢ Nailve Bayes ¢

Logistic Regression

\

Awesome classifier,
terrible name

If Chris could rename it he would call it: Sigmoidal Classification

What makes for a "smart”
logistic regression algorithm?

Logistic regression gets its
intelligence from its
thetas (aka its parameters)

Piech, CS106A, Stanford University

How Do We Learn Parameters?

Let’s say that:
x =1[1,0,1,1]

Data looks
unlikely

How Do We Learn Parameters?

Let’s say that:
x =1[1,0,1,1]

Data looks
unlikely

How Do We Learn Parameters?

Let’s say that:
x =1[1,0,1,1]

Data is much
more likely!

Maximum Likelihood Estimation

Likelihood of Data from a Normal

New

0.0 % = Settings -
b Polnts
12 A

Mask connect

Remember this?

Math for Logistic Regression

@ Make logistic regression assumption
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

@ Calculate the log likelihood for all data

LL(0) = Zy(i) log o(07x D) + (1 — yD) log[l — (87 xD)]
i=0

@ Get derivative of log likelihood with respect to thetas

o = [o]

Gradient Ascent

LOgISTIC regresSiOn
LL function is
convex

| J7 X
| - ‘ "0’0':"“\‘\“\\\\\:\\\\\\ |

Walk uphill and you will find a local maxima
(if your step size is small enough)

Gradient ascent is your
bread and butter
algorithm for optimization
(eg argmax)

Piech, CS106A, Stanford University

Gradient Ascent Step

o = [)

1=0
H new 0 old 4+ aLL(H Old) Do this
. p— . 7’] . 5
’ ’ 893' td for all
y n | _ (i) thetas!
1=0

LL®) -

What does this look like in code?

Logistic Regression Training

[Initialize: 0 0 for all 0 £ j < m

J

-
Calculate all Oj

Logistic Regression Training

[Initialize: 0 0 for all 0 £ j < m

J

-

-

-

N
Repeat many times:
| gradient[j] = 0 for all O L j<m
Calculate all gradient[j]’s based on data
[Hj += n * gradient[j] for all 0 < j < mJ
J

Logistic Regression Training

[Initialize: 0

P 0 for all 0 £ j < m

-

-

-

Repeat many times:

Ve

| gradient[j] = 0 for all O L j<m

Vs

-

For each training example (x, y):

For each parameter j:

Update gradient|[j] for current training

example

[é% += n * gradient[j] for all 0 < j < mJ

Logistic Regression Training

[Initialize: 0

P 0 for all 0 £ j < m

-

-

-

[é% += n * gradient[j] for all 0 < j < mJ

~
Repeat many times:
| gradient[j] = 0 for all O L j<m
For each training example (x, y):
For each parameter j:
. L 1
gradlent[J]‘F—-xj(y-— ; 6—9Tx>

Training

Dataset likelihood:

Likelihood

Training 1terations

Training

Dataset likelihood:

Likelihood

Training 1terations

Training

Dataset likelihood:

Likelihood

Training 1terations

Training

Dataset likelihood:

Likelihood

Training 1terations

Training

Dataset likelihood:

Likelihood

Training 1terations

Training

Dataset likelihood:

Likelihood

Training 1terations

Don’t forget:

.J X; is j-th input variable
and x, = 1.

Allows for 0, to be an
Intercept.

Piech, CS106A, Stanford University

Classification with Logistic Regression

+ Training: determine parameters 6, (forall 0 <j<m)

« After parameters 6, have been learned, test classifier

- To test classifier, for each new (test) instance X:

. Compute:p:P(Y=1|X)=1;_Z, where 2z =6'x
+e

1 p>0.5

= Classify instance as: y = .
0 otherwise

- Note about evaluation set-up: parameters 6, are not
updated during “testing” phase

Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)

Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)

Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)

Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)

Prediction
x:. 0 | 1

PY =1|X =x) = 0(6'x)

Chapter 2: How Come?

Logistic Regression

@ Make logistic regression assumption
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

@ Calculate the log probability for all data

LL(0) = Zy(i) log o(07x D) + (1 — yD) log[l — (87 xD)]
i=0

@ Get derivative of log probability with respect to thetas

o = [o]

How did we get that LL function?

Recall: PMF of Bernoulli

« Y ~ Ber(p)
. Probability mass function: P(Y = y)

PMF of Bernoulli PMF of Bernoulli (p = 0.2)

\%

l1-p 0.8
0.6
0.4 1

P
0.2¢

— 0 1 1

Log Probability of Data
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

‘\“\?\.\e P(Y = y‘X = X) — O'(HTX)y . [1 _ O'(HTX)} (1—y)

T L) =[Py = y@|x = x@)

- NG 11—y
— H(;(gTX(Z))y(" {1 —o(0Tx)]

\0%
e
e no | | |
LL(@) — Zy(z) 1Og0'((9TX(Z)) + (1 _ y(z)> 10g[1 - U(HTX(Z))]
1=0

How did we get that gradient?

Sigmoid has a Beautiful Slope

True fact about
sigmoid functions

0
8—%0(2) = 0(2)[1 —o(2)]

0
Errata: Accidentally wrote 57~ o(z) =0o(2)[1— 2

Sigmoid has a Beautiful Slope

o . 0 _
87ja(e 7)? a7j0(z) =0 (2)[1 —o(2)]

where z = 01«

Y T\ — 0 0z Chain rule!
99710) = 5,79 5.
a%J(HTx) =007 2)[1 — o (6")]z; Plug and chug
J

Sigmoid, you should be a ski hill

Sigmoid has a Beautiful Slope

ARE YOU READY"??7

| think ’'m Ready...

OLL(0)
00,

Where

LL) =) yPlogo(@x)+ (1—y)log[l — o(87x")]

1=1

)

srant ord

Think About Only One Training Instance

LL(O) =3 y@log g + (1 - y®) log[1 — 5]
1=1

We only need to calculate the
gradient for one training example!

9, . 0 .
%ZL:][(%,Z) :;%f(af,l)

We will pretend we only have
one example

LL(0) = ylogy + (1 —y)log[l — 9]

We can sum up the gradients of each
example to get the correct answer

First, imagine only one example

LL(#) = ylog g+ (1 —y)log[l — 7]
Where ¢ = o(0' %)

OLL(9) _ OLL(0) 9y CHAIN RULZ!
20, 9 90,

First, imagine only one example

LL(0) = ylogy + (1 —y)log[l — g]

Where ¢ = o(0' %)

OLL(6) _ OLL(6)

00,

0y 00,

= (y — 9)x;

CHAIN RULZ!

Already did that
one

Derive this one

Simplify

Make it Simple

LL(#) =ylogy + (1 —y)log[l — 7]
Where § = o(6x)

OLL(9) _ OLL(0) 0y CHAIN RULZ!
20, 9 90,
 OLL()

Already did that
one

=5 g1 —9)z;

A A

— [g _ 1- y} @(1 _ @)33] Derive this one

— (y _ y)ﬂfj Simplify

Now, all the data

LLO) =y logg" + (1 -y log[1 — 5]

1=1

G0 = J(QTX(Z'))

Derivative of sum...

0LL ~ 9 7 ~ (i i ~ (i
= %[y()logy”+(1—y())10g[1—y()
=1 J
See last slide
1=1
Z — (7 9T (Z))]x§i) Some people dont like

hats...

Now, all the data

OLL(0)
99,

Logistic Regression

@ Make logistic regression assumption
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

@ Calculate the log probability for all data

LL(0) = Z y W logo(0TxD) + (1 —) log[l — o (8T xD)]

1=1

@ Get derivative of log probability with respect to thetas

o = [o]

The Hard Way

LL(#) = ylogo(0'x) + (1 — y)log[l — o(0* x)]

OLL(O) O . 9 .
] (1 — _
5, 06, —ylogo(6” x) + 9 (1 —y)log[l —o(0" X]
B Y l—y | 0O T
~ | o(0Tz) 1—o(0Tz) aej"(e z)

_ Y B l—y | 0 T
~ | o(0Tz) 1—o(0Tz) aefw 7)
y — o(0x)

~ Lo(0Tz)[1 — o(67x)] (0" x)[1 —o(0" z)z;

= [y —o(0"z)] z;

Phew!

Chapter 3: Philosophy

Choosing an Algorithm?

- Many trade-offs in choosing learning algorithm

« Continuous input variables
o Logistic Regression easily deals with continuous inputs

- Naive Bayes needs to use some parametric form for continuous
inputs (e.g., Gaussian) or “discretize” continuous values into
ranges (e.g., temperature in range: <50, 50-60, 60-70, >70)

« Discrete input variables

o Naive Bayes naturally handles multi-valued discrete data by
using multinomial distribution for P(X; | Y)

o Logistic Regression requires some sort of representation of
multi-valued discrete data (e.g., one hot vector)

o Say X, € {A, B, C}. Not necessarily a good idea to encode X; as
taking on input values 1, 2, or 3 corresponding to A, B, or C.

Discrimination Intuition

« Logistic regression is trying to fit a line that separates
data instances where y = 1 from those where y =0

® o ® o 0Tx =0

o 90$0+91$1+'°'+9m$m20

« We call such data (or the functions generating the data)
“linearly separable”

= Nalve bayes is linear too as there is no interaction
between different features.

Some Data Not Linearly Seperable

. Some data sets/functions are not separable

» Not possible to draw a line that successfully separates
all the y = 1 points (green) from the y = 0 points (red)

« Despite this fact, logistic regression and Naive Bayes
still often work well in practice

T >eUendries
. \
, -
. ! ’ \ : . \R\ &
' =1 ‘ - &§1;/

Temiza &

Neuron

\
Temri-a huﬂ;n‘ﬁ

Neuron

\
Termri~a hljﬂ,‘n—ﬁ

Neuron

Terri-y hm.*n.i

Some inputs are more important

Termiza bunt N -ﬂ

Artificial Neurons

Biological Basis for Neural Networks

. A neuron
‘Dené.'.ite Xl 91
\\ \) X2 92
ap o
e Aa;'_ X3 0 y
| 0,
euron scheme Xy
. Your brain

Actually, it’s probably someone else’s brain

(aka Neural Networks)

Deep learning is (at its
core) many logistic
regression pieces stacked
on top of each other.

Alpha GO

1ISION

>
-
S
=)
Q
=
O
&

Revolution in Al

Computers Making Art

Basically just many logistic regression cells
And lots of chain rule...

Next up: Deep Learning!

