

Chris Piech CS109, Stanford University

Machine Learning

Great Idea Neural Networks Linear
Regression Logistic Regression Naive Bayes Core Algorithms Parameter Estimation Theory

Review

Classification

Classification Task

Heart

Ancestry

Netflix

Training

Testing

Training Data

Assume IID data:

n training datapoints

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$$

$$m = |\mathbf{x}^{(i)}|$$

Each datapoint has m features and a single output

Training: Heart Disease Classifier

Testing: Heart Disease Classifier

Naïve Bayes Classification

Big Assumption

Naïve Bayes Assumption:

$$P(\mathbf{x}|y) = \prod_{i} P(x_i|y)$$

End Review

Machine Learning Dependencies

Great Idea

Core Algorithms

Theory

Chapter 0: Background

Background: Sigmoid Function

The sigmoid function squashes z to be a number between 0 and 1

Background: Key Notation

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function

$$\theta^T \mathbf{x} = \sum_{i=1}^n \theta_i x_i$$

Weighted sum (aka dot product)

$$= \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$\sigma(\theta^T \mathbf{x}) = \frac{1}{1 + e^{-\theta^T \mathbf{x}}}$$

Sigmoid function of weighted sum

Background: Chain Rule

Who knew calculus would be so useful?

$$\frac{\partial f(x)}{\partial x} = \frac{\partial f(z)}{\partial z} \cdot \frac{\partial z}{\partial x}$$

Aka decomposition of composed functions

$$f(x) = f(z(x))$$

Chapter 1: Big Picture

From Naïve Bayes to Logistic Regression

In classification we care about P(Y | X)

- Recall the Naive Bayes Classifier
 - Predict P(Y | X)
 - Use assumption that $P(X|Y) = P(X_1, X_2, ..., X_m|Y) = \prod_{i=1}^{m} P(X_i|Y)$
 - That is a pretty big assumption...

- Could we model P(Y | X) directly?
 - Welcome our friend: logistic regression!

Logistic Regression Assumption

- Could we model P(Y | X) directly?
 - Welcome our friend: logistic regression!

Logistic Regression Assumption

- Could we model P(Y | X) directly?
 - Welcome our friend: logistic regression!

$$P(Y=1|\mathbf{X}=\mathbf{x})=\sigma\Big(\sum_{i}\theta_{i}x_{i}\Big)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma\left(\sum_{i} \theta_{i} x_{i}\right)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{i} \theta_{i} x_{i} \right)$$

Logistic Regression Cartoon

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{i} \theta_{i} x_{i} \right)$$

Inputs x = [0, 1, 1]

Inputs

Inputs + Output

Inputs

Weights

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{i} \theta_{i} x_{i} \right)$$

Weighed Sum

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{i} \theta_{i} x_{i} \right)$$

Squashing Function

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{i} \theta_{i} x_{i} \right)$$

Prediction

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{i} \theta_{i} x_{i} \right)$$

Parameters Affect Prediction

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{i} \theta_{i} x_{i} \right)$$

Parameters Affect Prediction

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{i} \theta_{i} x_{i} \right)$$

Parameters Affect Prediction

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{i} \theta_{i} x_{i} \right)$$

Different Predictions for Different Inputs

Different Predictions for Different Inputs

Different Predictions for Different Inputs

Logistic Regression Assumption

- Model conditional likelihood P(Y | X) directly
 - Model this probability with *logistic* function:

$$P(Y = 1|\mathbf{X}) = \sigma(z) \text{ where } z = \theta_0 + \sum_{i=1}^{m} \theta_i x_i$$

- For simplicity define $x_0=1$ so $z=\theta^T\mathbf{x}$
- Since $P(Y = 0 \mid X) + P(Y = 1 \mid X) = 1$:

$$P(Y = 1|X = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$

$$P(Y = 0|X = \mathbf{x}) = 1 - \sigma(\theta^T \mathbf{x})$$

Recall: Sigmoid function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

The Sigmoid Function

What is in a Name

Regression Algorithms

Linear Regression

Classification Algorithms

Naïve Bayes

Logistic Regression

Awesome classifier, terrible name

If Chris could rename it he would call it: Sigmoidal Classification

What makes for a "smart" logistic regression algorithm?

Logistic regression gets its *intelligence* from its thetas (aka its parameters)

How Do We Learn Parameters?

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma\left(\sum_{i} \theta_{i} x_{i}\right) = 0.4$$

Data looks unlikely

How Do We Learn Parameters?

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma\left(\sum_{i} \theta_{i} x_{i}\right) = 0.4$$

Data looks unlikely

How Do We Learn Parameters?

 $P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma\left(\sum_{i} \theta_{i} x_{i}\right) = 0.9$

Data is much more likely!

Maximum Likelihood Estimation

Likelihood of Data from a Normal

Math for Logistic Regression

Make logistic regression assumption $P(Y=1|X=\mathbf{x}) = \sigma(\theta^T\mathbf{x})$ $P(Y=0|X=\mathbf{x}) = 1 - \sigma(\theta^T\mathbf{x})$ \hat{y}

(2) Calculate the log likelihood for all data

$$LL(\theta) = \sum_{i=0}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log[1 - \sigma(\theta^T \mathbf{x}^{(i)})]$$

(3) Get derivative of log likelihood with respect to thetas

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=0}^n \left[y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)}) \right] x_j^{(i)}$$

Gradient Ascent

Walk uphill and you will find a local maxima (if your step size is small enough)

Gradient ascent is your bread and butter algorithm for optimization (eg argmax)

Gradient Ascent Step

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=0}^n \left[y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)}) \right] x_j^{(i)}$$

$$\theta_{j}^{\text{new}} = \theta_{j}^{\text{old}} + \eta \cdot \frac{\partial LL(\theta^{\text{old}})}{\partial \theta_{j}^{\text{old}}}$$

$$= \theta_{j}^{\text{old}} + \eta \cdot \sum_{i=0}^{n} \left[y^{(i)} - \sigma(\theta^{T} \mathbf{x}^{(i)}) \right] x_{j}^{(i)}$$

Do this for all thetas!

What does this look like in code?

$$\theta_{j}^{\text{new}} = \theta_{j}^{\text{old}} + \eta \cdot \frac{\partial LL(\theta^{\text{old}})}{\partial \theta_{j}^{\text{old}}}$$

$$= \theta_{j}^{\text{old}} + \eta \cdot \sum_{i=0}^{n} \left[y^{(i)} - \sigma(\theta^{T} \mathbf{x}^{(i)}) \right] x_{j}^{(i)}$$

```
Initialize: \theta_i = 0 for all 0 \le j \le m
```

```
Calculate all \theta_i
```

Initialize: $\theta_j = 0$ for all $0 \le j \le m$

Repeat many times:

gradient[j] = 0 for all $0 \le j \le m$

Calculate all gradient[j]'s based on data

$$\theta_j$$
 += η * gradient[j] for all $0 \le j \le m$

Initialize: $\theta_j = 0$ for all $0 \le j \le m$

Repeat many times:

gradient[j] = 0 for all $0 \le j \le m$

For each training example (x, y):

For each parameter j:

Update gradient[j] for current training
 example

 θ_i += η * gradient[j] for all $0 \le j \le m$

Initialize: $\theta_j = 0$ for all $0 \le j \le m$

Repeat many times:

gradient[j] = 0 for all $0 \le j \le m$

For each training example (x, y):

For each parameter j:

gradient[j]
$$+= x_j \left(y - \frac{1}{1 + e^{-\theta^T \mathbf{x}}}\right)$$

 $\theta_i += \eta * gradient[j] for all <math>0 \le j \le m$

Don't forget:

 x_j is j-th input variable and $x_0 = 1$.

Allows for θ_0 to be an intercept.

Classification with Logistic Regression

- Training: determine parameters θ_j (for all $0 \le j \le m$)
 - After parameters θ_i have been learned, test classifier
- To test classifier, for each new (test) instance X:

• Compute:
$$p = P(Y = 1 | X) = \frac{1}{1 + e^{-z}}$$
, where $z = \theta^T \mathbf{x}$

• Classify instance as:
$$\hat{y} = \begin{cases} 1 & p > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

• Note about evaluation set-up: parameters θ_j are **not** updated during "testing" phase

$$P(Y = 1|X = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$

$$P(Y = 1|X = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$

$$P(Y = 1|X = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$

$$P(Y = 1|X = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$

$$P(Y = 1|X = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$

Chapter 2: How Come?

Logistic Regression

Make logistic regression assumption $P(Y=1|X=\mathbf{x})=\sigma(\theta^T\mathbf{x})$ $P(Y=0|X=\mathbf{x})=1-\sigma(\theta^T\mathbf{x})$ \hat{y}

$$LL(\theta) = \sum_{i=0}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log[1 - \sigma(\theta^T \mathbf{x}^{(i)})]$$

(3) Get derivative of log probability with respect to thetas

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=0}^n \left[y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)}) \right] x_j^{(i)}$$

How did we get that LL function?

Recall: PMF of Bernoulli

- $Y \sim Ber(p)$
- Probability mass function: P(Y = y)

PMF of Bernoulli

PMF of Bernoulli (p = 0.2)

$$P(Y = y) = p^{y}(1-p)^{1-y}$$

$$P(Y = y) = p^{y}(1-p)^{1-y}$$
 $P(Y = y) = 0.2^{y}(0.8)^{1-y}$

Log Probability of Data

$$P(Y = 1|X = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$
$$P(Y = 0|X = \mathbf{x}) = 1 - \sigma(\theta^T \mathbf{x})$$

$$Implies$$
 $P(Y = y | X = \mathbf{x}) = \sigma(\theta^T \mathbf{x})^y \cdot [1 - \sigma(\theta^T \mathbf{x})]^{(1-y)}$

For ITD data
$$L(\theta) = \prod_{i=1}^n P(Y = y^{(i)} | X = \mathbf{x}^{(i)})$$

$$= \prod_{i=1}^n \sigma(\theta^T \mathbf{x}^{(i)})^{y^{(i)}} \cdot \left[1 - \sigma(\theta^T \mathbf{x}^{(i)})\right]^{(1-y^{(i)})}$$

Take the log
$$LL(\theta) = \sum_{i=0}^n y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1-y^{(i)}) \log[1-\sigma(\theta^T \mathbf{x}^{(i)})]$$

How did we get that gradient?

Sigmoid has a Beautiful Slope

True fact about sigmoid functions

$$\frac{\partial}{\partial \theta_i} \sigma(z) = \sigma(z) [1 - \sigma(z)]$$

Errata: Accidentally wrote

$$\frac{\partial}{\partial z}\sigma(z) = \sigma(z)[1-z]$$

Sigmoid has a Beautiful Slope

$$\frac{\partial}{\partial \theta_i} \sigma(\theta^T x)$$
?

$$\frac{\partial}{\partial \theta_j} \sigma(z) = \sigma(z) [1 - \sigma(z)]$$

where
$$z = \theta^T x$$

$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T x) = \frac{\partial}{\partial z} \sigma(z) \cdot \frac{\partial z}{\partial \theta_j}$$

Chain rule!

$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T x) = \sigma(\theta^T x) [1 - \sigma(\theta^T x)] x_j$$

Plug and chug

Sigmoid has a Beautiful Slope

$$\hat{y} = \sigma(\theta^T x)$$

$$\frac{\partial y}{\partial \theta_j} = \sigma(\theta^T x) [1 - \sigma(\theta^T x)] x_j$$

$$=\hat{y}(1-\hat{y})x_j$$

ARE YOU READY???

I think I'm Ready...

$$\frac{\partial LL(\theta)}{\partial \theta_j}$$

Where

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log[1 - \sigma(\theta^{T} \mathbf{x}^{(i)})]$$

This is Sparta!!!!!

This is Sparta!!!!!

Stanford

Think About Only One Training Instance

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log[1 - \hat{y}^{(i)}]$$

We only need to calculate the gradient for one training example!

$$\frac{\partial}{\partial x} \sum_{i} f(x, i) = \sum_{i} \frac{\partial}{\partial x} f(x, i)$$

We will pretend we only have one example

$$LL(\theta) = y \log \hat{y} + (1 - y) \log[1 - \hat{y}]$$

We can sum up the gradients of each example to get the correct answer

First, imagine only one example

$$LL(\theta) = y \log \hat{y} + (1 - y) \log[1 - \hat{y}]$$
Where $\hat{y} = \sigma(\theta^T \mathbf{x})$

$$\frac{\partial LL(\theta)}{\partial \theta_{j}} = \frac{\partial LL(\theta)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \theta_{j}}$$

CHAIN RULZ!

First, imagine only one example

$$LL(\theta) = y \log \hat{y} + (1 - y) \log[1 - \hat{y}]$$
Where $\hat{y} = \sigma(\theta^T \mathbf{x})$

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \frac{\partial LL(\theta)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \theta_j}$$

CHAIN RULZ!

$$= \frac{\partial LL(\theta)}{\partial \hat{y}} \hat{y} (1 - \hat{y}) x_j$$

Already did that one

$$= \left[\frac{y}{\hat{y}} - \frac{1-y}{1-\hat{y}}\right] \hat{y}(1-\hat{y})x_j$$

Derive this one

$$=(y-\hat{y})x_j$$

Simplify

Make it Simple

$$LL(\theta) = y \log \hat{y} + (1 - y) \log[1 - \hat{y}]$$
Where $\hat{y} = \sigma(\theta^T \mathbf{x})$

$$\begin{split} \frac{\partial LL(\theta)}{\partial \theta_j} &= \frac{\partial LL(\theta)}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \theta_j} \\ &= \frac{\partial LL(\theta)}{\partial \hat{y}} \hat{y} (1-\hat{y}) x_j \end{split} \qquad \begin{array}{l} \text{CHAIN RULZ!} \\ &\text{Already did that} \\ &\text{one} \\ \end{split}$$

$$= \Big[rac{y}{\hat{y}} - rac{1-y}{1-\hat{y}}\Big]\hat{y}(1-\hat{y})x_j$$
 Derive this one

$$=(y-\hat{y})x_{i}$$
 Simplify

Now, all the data

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log[1 - \hat{y}^{(i)}]$$
$$\hat{y}^{(i)} = \sigma(\theta^{T} \mathbf{x}^{(i)})$$

Derivative of sum...

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log[1 - \hat{y}^{(i)}] \right]$$

$$= \sum_{i=1}^{n} [y^{(i)} - \hat{y}^{(i)}] x_j^{(i)}$$

See last slide

$$= \sum_{i=1}^{n} [y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)})] x_j^{(i)}$$

Some people don't like hats...

Now, all the data

$$\frac{\partial LL(\theta)}{\partial \theta_j}$$

$$= \sum_{i=1}^{n} [y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)})] x_j^{(i)}$$

Logistic Regression

1) Make logistic regression assumption

$$P(Y = 1|X = \mathbf{x}) = \sigma(\theta^T \mathbf{x})$$
$$P(Y = 0|X = \mathbf{x}) = 1 - \sigma(\theta^T \mathbf{x})$$

(2) Calculate the log probability for all data

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log[1 - \sigma(\theta^T \mathbf{x}^{(i)})]$$

(3) Get derivative of log probability with respect to thetas

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=0}^n \left[y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)}) \right] x_j^{(i)}$$

The Hard Way

$$LL(\theta) = y \log \sigma(\theta^T \mathbf{x}) + (1 - y) \log[1 - \sigma(\theta^T \mathbf{x})]$$

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} y \log \sigma(\theta^T \mathbf{x}) + \frac{\partial}{\partial \theta_j} (1 - y) \log[1 - \sigma(\theta^T \mathbf{x})]$$

$$= \left[\frac{y}{\sigma(\theta^T x)} - \frac{1 - y}{1 - \sigma(\theta^T x)} \right] \frac{\partial}{\partial \theta_j} \sigma(\theta^T x)$$

$$= \left[\frac{y}{\sigma(\theta^T x)} - \frac{1 - y}{1 - \sigma(\theta^T x)} \right] \frac{\partial}{\partial \theta_j} \sigma(\theta^T x)$$

$$= \left[\frac{y - \sigma(\theta^T x)}{\sigma(\theta^T x)[1 - \sigma(\theta^T x)]} \right] \sigma(\theta^T x)[1 - \sigma(\theta^T x)]x_j$$

$$= \left[y - \sigma(\theta^T x) \right] x_j$$

Phew!

Chapter 3: Philosophy

Choosing an Algorithm?

Many trade-offs in choosing learning algorithm

- Continuous input variables
 - Logistic Regression easily deals with continuous inputs
 - Naive Bayes needs to use some parametric form for continuous inputs (e.g., Gaussian) or "discretize" continuous values into ranges (e.g., temperature in range: <50, 50-60, 60-70, >70)

Discrete input variables

- Naive Bayes naturally handles multi-valued discrete data by using multinomial distribution for P(X_i | Y)
- Logistic Regression requires some sort of representation of multi-valued discrete data (e.g., one hot vector)
- Say X_i ∈ {A, B, C}. Not necessarily a good idea to encode X_i as taking on input values 1, 2, or 3 corresponding to A, B, or C.

Discrimination Intuition

• Logistic regression is trying to fit a <u>line</u> that separates data instances where y = 1 from those where y = 0

$$\theta^T \mathbf{x} = 0$$

$$\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_m x_m = 0$$

- We call such data (or the functions generating the data)
 "<u>linearly separable</u>"
- Naïve bayes is linear too as there is no interaction between different features.

Some Data Not Linearly Seperable

Some data sets/functions are not separable

- Not possible to draw a line that successfully separates all the y = 1 points (green) from the y = 0 points (red)
- Despite this fact, logistic regression and Naive Bayes still often work well in practice

Neuron

Neuron

Neuron

Neuron

Neuron

Some inputs are more important

Artificial Neurons

Biological Basis for Neural Networks

A neuron

Your brain

Actually, it's probably someone else's brain

(aka Neural Networks)

Deep learning is (at its core) many logistic regression pieces stacked on top of each other.

Alpha GO

Computer Vision

Revolution in Al

Computers Making Art

Basically just many logistic regression cells And lots of chain rule...

Next up: Deep Learning!